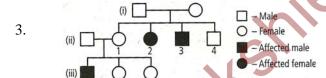

GENETICS

1. Which of the following is mismatched pair of disease and its related symptom?

Disease

Symptom

- 1) Phenylketonuria Urine turns black on exposure to air
- 2) Down's syndrome Physical and mental retardation
- 3) Klinefelter's syndrome Sterile males
- 4) Turner's syndrome Sterile females.


Inheritance of which of the following traits is shown in the above given cross?

1) X-linked dominant trait

2) X-linked recessive trait

3) Autosomal recessive trait

4) Autosomal dominant trait.

Study the given pedigree chart for sickle-cell anaemia and select the most appropriate option for the genotypes.

Genotypes of parents

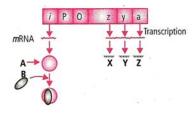
1)
$$Hb^A Hb^S$$
, $Hb^A Hb^A$ $Hb^A Hb^A$, $Hb^A Hb^S$

2)
$$Hb^A Hb^S$$
, $Hb^A Hb^S$ $Hb^A Hb^A$, $Hb^A Hb^A$

4. Which one is the incorrect match?

5. Complete the given table by selecting the correct option.

Genotypes	Blood groups
<i>JAJA</i> , (i)	A
IΒIΒ, (ii)	В
(iii)	AB
(iv)	100


В

	(i)	(ii)	(iii)	(iv)
1)	IAIA	IBIB	IAIB	ii
2)	JAJA	IBIB.	I ^A I ^B	J ^A j
3)	IAi .	I ^B i	I ^A I ^B	ii
4)	I ^A i	J ^B j	A B	I ^B i

 \mathbf{Z}

6. The given figure shows lac operon and its functioning. Select the option which correctly labels

A, B, X, Y and Z.

Y

1) Repressor Inducer β-Galacto-sidase Permease Trans acetylase

X

2) Repressor Inducer Permease β-Galacto-sidase Trans acetylase

3) Inducer Repressor β -Galacto-sidase Permease Trans acetylase

4) Inducer Repressor β-Galacto-sidase Trans-acetylase Permease

7. Match column I with column II and select the correct option from the codes given below.

Column I

Column II

- A) Sigma factor
- (i) 5' 3'
- B) Capping
- (ii) Initiation
- C) Tailing
- (iii) Termination
- D) Coding strand
- (iv) 5' end
- (v) 3' end
- 1) (A)-(iii), (B)-(v), (C)-(iv), (D)-(ii)
- 2) (A)-(ii), (B)-(iv), (C)-(v), (D)-(i)
- 3) (A)-(ii), (B)-(iv), (C)-(v), (D)-(iii)
- 4) (A)-(iii), (B)-(v), (C)-(iv), (D)-(i).

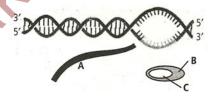
8. Match the scientists given in column I to their respective discoveries given in column II and select the correct option.

Column I

Column II

A) Alec Jeffreys

(i) Lac operon


B) F. Sanger

(H) Automated DNA sequencers

C) Jacob and Monoth

- (iii) DNA finger printing
- D) Avery, Mc Leod and Mc Carty.
- (iv)Transforming principle
- 1) (A)-(ii), (B)-(iii), (C)-(iv), (D)-(i)
- 2) (A)-(iii), (B)-(ii), (C)-(i), (D)-(iv)
- 3) (A)-(iii), (B)-(ii), (C)-(iv), (D)-(i)
- 4) (A)-(i), (B)-(ii), (C)-(iii), (D)-(iv).

9. Following figure represents the process of transcription in bacteria.

Select the option which correctly labels A, B and C.

- 1) A = DNA, B = RNA, C = Promoter
- 2) A = RNA, B = RNA polymerase, C = Rho factor
- 3) A = RNA, B = RNA polymerase, C = Sigma factor
- 4) A = DNA, B = DNA polymerase, C = RNA.

10.	Which process occurs in t	he regulation of gene	expression in proka	aryotes but does not occur
	in the regulation of gene e	xpression in eukaryote	es.	
	1) RNA is formed from the	transcription of base trip	plets on DNA	
	2) Translation of the mRNA	starts as the 5' end		
	3) RNA polymerase synthes	izes RNA nucleotides in	n a 5' to 3' direction	
	4) Ribosome helps to produc	ce polypeptide during tr	ranslation	
11.	Genes that are involved in	n turning off or on th	e transcription of s	set of structural genes are
	called			-0,
	1) Operator genes	2) Promotor genes	3) Repressor genes	4) Regulatory genes
12.	Which of following stateme	ents is correct?		^ •
	1) Glucose acts as inducer for	or lac operon	+. C	
	2) Galactose acts as inducer	for lac operon	X	
	3) Glucose or galactose acts	as inducers for lac open	con	
	4) Glucose or galactose cand	ot as inducers for lac op	eron	
13.	Lactose is the substrate for	r the enzyme β - galact	osidase, it regulates	
	1) Switching on and off of the	he operon	2) Synthesis of poly	ypeptide chain
	3) Attachment RNA polyme	erase to promoter	4) Expression of in	hibitor gene
14.	Which of the following bin	ds to stop codon at the	e end of translation?	•
	1) Sigma factor	2) rho factor	3) Release factor	4) Stop factor
15.	In view of importance of g	enetic research, the ge	nome of the plant is	analysed
	1) Larthyrus oderatas	2) Pisum sativum	3) Arabidopsis	4) Mimosa
16.	Nucleotide base pairs in ar	n average gene		
	1) 1.5 millions	2) 3000	3) 2416	4) 3 billion
17.	Number of SNPs (snips) in	the genome		
•	1) 2.2 million	2) 1.4 million	3) 1 billion	4) 3 billion

18.	Ma	tch the	e follo	wing												
	Lis	t – I					List – II									
	A)	3164	– 7 m	illion	ops	i)	Protein end	coding g	genes	of hu	man					
	B)	2, 968	3 gene	s		ii)	Y – chrom	osome o	of hun	nan						
	C)	231 g	enes			iii)	Chromoso	me – I c	f hum	nan						
	D)	30, 00	00 gen	ies		iv)	Human ge	nome							_	
						v)	X – chrom	osome o	of hun	nan						
		A	В	C	D					A	В	C	D	\sim		
	1	i	ii	iii	iv				2	iv	iii	ii	v	U		
	3	iv	i	ii	v				4	iv	iii	ii	iii	•		
19.	Arı	ange t	the fo	llowin	g fron	n up	stream to	down st	ream	in th	e follo	wing	relat	ted to lac	opero	n
	A) .	A – str	uctura	ıl gene	;				B) Z	– stri	uctural	gene				
	C)	Y – str	uctura	ıl gene	;				D) (Opera	tor					
	E) l	Repres	sor ge	ne					F) P	romo	ter					
	1) A	ABCDI	EF			2) A	ACBDFE	7	3) A	CBEF	FD		4) A	DEFBC		
20.	Ass	ertion	(A):	Lac o	peron	is a	n inducible	operon	1							
	Rea	ison (R	i) : 1	The lac	opero	on ge	ts 'on' by tl	ne induc	er							
	1) I	Both A	and R	R are c	orrect	and l	R is the corn	rect exp	lanatio	on of	A					
	2) I	Both A	and R	R are c	orrect	and l	R is not the	correct	explai	nation	n of A					
	3) <i>A</i>	A is con	rrect b	out R i	s incor	rect			4) A	is inc	correct	but R	is co	orrect		
21.	Ass	ertion	(A):	In pro	karyot	ic ce	lls polypept	tide beg	ins to	get s	ynthes	sized,	befor	e the terr	ninatic	on of
	syn	thesis	of m l	RNA.												
				-	•		bosomes ca	an bind	and	begin	trans	slation	befo	ore polyr	nerase	has
	1	npletec														
4	-7						R is the com	-								
							R is not the	correct	-							
	3) <i>A</i>	A is co	rrect b	out R i	s incor	rect			4) A	is inc	correct	but R	l is co	orrect		

22.	Assertion (A): In most case	s the gene in eukaryotes	s is discontinuous	
	Reason (R): In eukaryotes,	the genes are split gene	es with coding introns	s and noncoding exons
	1) Both A and R are correct	and R is the correct exp	olanation of A	
	2) Both A and R are correct	and R is not the correct	explanation of A	
	3) A is correct but R is incor	rrect	4) A is incorrect bu	t R is correct
23.	Which of the following act	s as a catalyst in a bac	terial cell?	
	1) hn RNA	2) 23 sr RNA	3) 5sr RNA	4) sn RNA
24.	Allelic sequence variation	with more than 0.01 fr	equencies in a popu	lation is
	1) SNP's	2) VNTR's	3) DNA polymorph	ism 4) Incomplete
	dominance			(,
25.	Select the correct statemen	nt		
	a) RNA polymerase I transc	ribes r RNAs	b) RNA polymerase	e II transcribes sn RNAs
	c) RNA polymerase III trans	scribes hn RNAs	d) RNA polymerase	e II transcribes hn RNAs
	1) a and d are correct	2) b and c are correct	3) a and c are corre	ct 4) a and b are correct
26.	Automated DNA sequenci	ng is based on method	developed by	
	1) Alec jaffreys	2) Frederick Sanger	3) Erwin chargaff	4) Watson & crick
27.	In eukaryotic cell transcri	ption, RNA splicing an	d RNA capping tak	es place in
	1) Nucleus	2) Cytoplasm	3) Ribosomes	4) Mitochondria
28.	A unit of lac – operon whi	ch in the absence of la	ctose, suppresses th	e activity of operator gene
	is			
	1) Structural gene	2) Regulatory gene	3) Repressor gene	4) Promoter gene
29.	Process used for amplifica	tion or multiplication	of DNA for finger p	rinting is
	1) Polymerase chain reaction	n	2) Southern blotting	g technique
	3) Autoradiography		4) Electrophoresis	
30.	Which of the following tec	hnique helps us to fine	d out variations in i	ndividuals of a population
	at DNA level?			
	1) Polymerase chain reaction	n	2) Southern blotting	g technique
	3) DNA finger pointing		4) Gel electrophore	sis
31.	DNA finger printing work	s on which principle in	DNA sequence.	
	1) Transcription	2) Polymorphism	3) Translation	4) Transformation

32.	Which of the followin	g provide flatform for j	joining of aminoacids	in translation?	
	1) Mitochondria	2) Endoplasmic re	eticulum		
	3) Nucleus	4) Ribosomes			
33.	Identify the free living	g non-pathogenic nema	tode.		
	1) Arabidopsis		2) Drosophila me	elanogaster	
	3) Cenorhabditis elegar	ns	4) Wuchereria ba	ncrofti	
34.	Select the two correct	statements out of the f	our given below abou	t lac operon	
	i) Glucose or galactose	may bind with the repre	essor and inactivate it	~O,	
	ii) In the absence of lac	ctose the repressor binds	with the operator region	n O	
	iii) The z-gene codes for	or permease			
	iv) This was elucidated	by Francois Jacob and J	Jacques Monad		
	The correct statements	are			
	1) II and III	2) I and III	3) II and IV	4) I and II	
35.	According to the Lac	operon concept, which	functional unit of the	bacterial genetic mate	rial is
	responsible for suppr	essing the activity of th	e operator gene in the	e absence of lactose?	
	1) Regulator gene	2) Structural gene	3) Promoter gene	4) Repressor gene	
36.	An m RNA has some	additions sequences tha	at are not translated a	re present at	
	1) Before start codon a	t 5' end and before stop	codon at 3' end		
	2) Before start codon a	t 3' end and before stop	codon at 5' end		
	3) Before start codon a	t 5' end and after stop co	odon at 3' end		
	4) After start codon at :	5'end and before stop co	don at 3' end		
37.	ABO blood groups i	n humans are controlle	ed by the gene I. it has	three alleles $-I^A$, I^B and	nd i.
	since there are three	different alleles, six di	fferent genotypes are	possibile. How many	
	phenotypes can occu	ır?			
4	1) 3 2) 1 3)4 4)	2			
38.	Which of the followi	ng disorders are cause	d due to recessive auto	osomal mutations?	
	1) Tuner's syndrome	and sickle cell anaemia			
	2) Edward's syndrom	e and Down's syndrome	.		
	3) Cystic fibrosis and	phenlketonuria			
	4) Alzheimer's diseas	se and Huntington's chor	rea		

39.	A man with enlarged breasts,	sparse body hair and XXY genotype is suffering from
	1) Down's syndrome	2) Tuner's syndrome
	3) Klinefelter syndrome	4) Super male
40.	Which of the following is a syr	mptom of Down's syndrome?
	1) Flat back of head	2) Many "loops" on finger tips
	3) Big and wrinkled tongue	4) All of these
41.	Genes with multiple phenotyp	ic effectsas are known as
	1) Hypostatic genes	2) Duplicate genes
	3) Pleiotropic genes	4) Complementary genes
42.	Which one of the following co	nditions correctly describes the manner of determining the
	sex?	
	1) Homozygous sex chromoson	nes (ZZ) determine female sex in birds
	2) Xo type of sex chromosomes	determine male sex in grasshopper
	3) XO condition in humans as for	ound in turners syndrome, determines female sex
	4) Homozygous sex chromoson	nes (XX) produce male in Drosphila
43.	Removal of introns and joinin	g of exons in a defined order during transcription is called
	1) Looping 2) Inducing 3) Slicin	ng 4) Splicing
44.	The lac operon is turned on w	hen allolactose molecules bind to
	1) Promoter site 2) Operator si	te 3) mRNA 4) Repressor protein
45.	Identify the wrong statements	
	1) In male grasshoppers 50% of	the sperms have no sex chromosome
	2) In domesticated fowls the sex	of the progeny depends on the type of sperm that fertilizes the
•	egg.	
	3) The human males have one o	f their sex chromosomes much shorter than the other
	4) The male fruit fly is heteroga	metic

1)									ŀ	EY									
1 <i>)</i> , 	1	2)	2	3)	4	4)	3	5)	3	6)	1	7)	2	8)	2	9)	2	10)	2
11)	1	12)	4	13)	1	14)	3	15)	3	16)	2	17)	2	18)	4	19)	2	20)	1
21)	4	22)	3	23)	2	24)	3	25)	1	26)	2	27)	1	28)	3	29)	1	30)	3
31)	2	32)	4	33)	3	34)	3	35)	4	36)	3	37)	3	38)	3	39)	3	40)	2
41)	3	42)	2	43)	4	44)	4	45)	2										
							C		(6				3						